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Abstract: The present paper addresses the performance of different 

ear feature extractors on partial ear images. The main goal is to find 

out which parts of the ear have major influence on successful 

recognition for each extractor. In this sense, a whole ear recognition 

pipeline has been simulated using Annotated Web Ears (AWE) 

Toolbox and dataset [1]. Ears have been divided in up, down, internal 

and external parts and results have been compared. It has been 

demonstrated the existence of performance gaps between different 

ear parts and extractors. Trying to exploit that, a score level distance 

fusion approach has been tested combining separately obtained 

distances by means of weighted averaging.  
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1. INTRODUCTION 

Image based biometric subject recognition has always been an active research topic in 

computer vision field. During the years, several physical metrics (face, iris…) and feature 

extractor algorithms have been explored. The present work is focused on ear recognition, 

a promising topic that still has several research issues unsolved.  

According to [1], feature extraction, used for ear recognition, can be divided into four 

different categories: geometric, holistic, local and hybrid. In this paper local methods have 

been addressed. They are based on the principle of evaluating the whole ear texture 

without looking for specific points or shapes. Because of that, it is interesting to address 

if different ear parts have different influence on recognition performance of these 

extractors. 

This information is especially useful when facing one of the most typical issues: occlusion. 

In some cases, clear images of ears cannot be acquired and recognition must be performed 

only on ears occluded by hair, glasses or earrings. Furthermore, depending on the occluded 

ear part recognition systems could suffer different performance degradation rates. Thus, it 

is important to investigate if these differences actually exist and if so, how big they are for 

each feature extractor.  

Despite helping to better overcome occlusion it is also interesting to address if this 

performance asymmetry between different ear parts could be somehow exploited to 

improve recognition rates when whole ear images are available    

2. SUBDIVIDED EAR RECOGNITION 

We perform recognition using two different subdivision approaches: up-down and 

internal-externa. For internal-external subdivision the whole dataset has been first divided 

into left-right images. The idea is to simulate separately up-down and external-internal 

parts of left and right ears and look for asymmetries in the performance.  

In order to get an overall and consistent picture of the topic, simulations have been carried 

out using several feature extractors. The following ones have been tested: Local Binary 

Patterns (LBP) [2], Binarized Statistical Image Features (BSIF) [3],[4]  Local Phase 

Quantization (LPQ) [5], Rotation Invariant LPQ (RLPQ) [6], Patterns of Oriented Edge 

Magnitudes (POEM) [7], Histogram of Oriented Gradients (HOG) [8],[9] and Dense Scale 

Invariant Feature Transform (DSIFT) [10].  All of them are already implemented in AWE 

toolbox and belong to local approach category.  

For score level fusion distances from different parts of the ear have been combined based 

on a simple weighted averaging (1) where α defines the averaging weight and goes from 

0 to 1. 

𝑑𝑐𝑜𝑚𝑏 = 𝛼 𝑑1 + (1 − 𝛼)𝑑2  (1) 



3. RESULTS 

To obtain partial ear images for the experiments, we used AWE dataset. It contains 1000 

images of 100 subjects that have been subdivided following the criteria shown in Figure 

1. Identification results based on the AWE dataset and ear division is described in the 

continuation of this section. 

 

Figure 1: Ear subdivision approaches. 

3.1 Up-Down comparison 

For up-down comparison Protocol 2 of AWE toolbox has been used. A previously defined 

distribution of a train set of 600 images has been used to test the performance of each 

algorithm based on 5 K-Fold and chi square distance. 

Obtained Rank-1 absolute and degradation values are displayed in Table 1. The Gap 

column shows the difference between upper and down parts. At the same time, Cumulative 

Match Characteristic (CMC) curves are plotted in Figure 2.  

 

Table 1: Rank-1 values for Up-Down comparison 

DATASET AWE Up Deg. Down Deg. Gap 

LBP 43.6 ± 7.2 36.3 ± 5.0 7.3 34.7 ± 7.5 8.9 +1.6 

BSIF 48.5 ± 6.9 42.9 ± 3.5 5.6 36.8 ± 9.4 11.7 +6.1 

LPQ 43.3 ± 7.7 39.2 ± 5.1 4.1 32.4 ± 9.0 10.9 +6.8 

RILPQ 43.5 ± 9.3 36.2 ± 5.1 7.3 31.2 ± 7.4 12.3 +5.0 

POEM 49.0 ± 6.9 40.1 ± 5.7 8.9 36.4 ± 7.9 12.6 +3.7 

HOG 43.5 ± 8.0 30.9 ± 3.3 12.6 34.0 ± 8.0 9.5 -3.1 

DSIFT 43.6 ± 8.5 34.1 ± 6.1 9.5 33.9 ± 13.5 9.7 +0.2 
 

 

It is clear that, for most of the algorithms, upper part of the ear has a higher influence in 

successful recognition. HOG and DSIFT are the only descriptors where upper part is equal 

or worse than down part. Especially for HOG, the performance degradation for both up 

and down parts is highly noticeable. 

 



 

 

 

 

 

 

 

 

 

Figure 2: CMC curves for Up-Down comparison 

 

On the other hand, for BSIF, LPQ and RILPQ obtained upper part curves are surprisingly 

close to ones with the whole ear.  

3.1 External-Internal comparison 

In this case, internal and external parts of left and right ears have been separately tested 

following AWE Protocol 1. Thus, the entire datasets have been tested with a random 

distribution, 5 K-Fold evaluation and chi square distance. Obtained Rank-1 results for both 

left and right ears are shown in Tables 2 and 3 respectively.  

 

Table 2: Rank-1 values for Left Internal-External comparison 

DATASET Left Left Int. Deg. Left Ext. Deg. Gap 

LBP 57.1 ± 6.3 55.0 ± 7.1 2.1 42.9 ± 4.0 14.2 +12.1 

BSIF 59.4 ± 6.9 62.7 ± 6.8 -3.3 44.4 ± 4.6 15.0 +18.3 

LPQ 58.2 ± 6.0 54.0 ± 6.8 4.2 38.6 ± 4.9 19.6 +15.4 

RILPQ 56.7 ± 6.5 

   

47.2 ± 5.8 9.5 40.6 ± 5.3 16.1 +6.6 

POEM 62.7 ± 4.5 47.7 ± 6.4 15.0 43.5 ± 6.3 19.2 +4.2 

HOG 57.9 ± 5.3 41.7 ± 5.0 16.2 41.9 ± 4.8 16.0 -0.2 

DSIFT 56.9 ± 5.2 51.7 ± 6.9 5.2 44.4 ± 2.8 12.5 +7.3 
 

 

According to the results, internal part appears to be more relevant than external part. All 

extractors have achieved better or at least equal recognition rates for this part of the ear 

and this difference is consistent for both left and right ears.  

The performance gap is not constant for all the extractors. HOG shows again practically 

no gap while BSIF and LPQ show the biggest one. Again, BSIF achieves almost the same 

performance for internal part and whole ear images. LPQ and DSIFT also get quite close 

to the whole ear curve. 



 

Table 3: Rank-1 values for Right Internal-External comparison 

DATASET Right Right Int. Deg. Right Ext. Deg. Gap 

LBP 52.4 ± 9.9 48.3 ± 2.1 4.1 38.5 ± 1.9 13.9 +9.8 

BSIF 57.7 ± 6.3 55.2 ± 3.7 2.5 38.7 ± 2.7 19.0 +16.5 

LPQ 52.9 ± 5.2 48.8 ± 4.3 4.1 34.2 ± 2.2 18.7 +14.6 

RILPQ 49.4 ± 6.5 42.9 ± 4.0 6.5 34.4 ± 3.6 15.0 +8.5 

POEM 58.9 ± 7.1 44.2 ± 3.6 14.7 39.4 ± 3.7 19.5 +4.8 

HOG 54.8 ± 8.1 40.0 ± 3.2 14.8 36.5 ± 4.7 18.3 +3.5 

DSIFT 51.2 ± 7.5 47.3 ± 3.0 3.9 30.2 ± 3.9 21.0 +17.1 

 

3.1 Distance fusion 

Separately obtained distances for up and down parts have been combined according to 

equation (1) for three different values of α: 0.5, 0.65 and 0.8. Obtained CMC curves for 

up-down are depicted in Figure 3. As it is shown, proposed distance combination always 

works equal or better than partial ear images separately. However, in general these 

improvements are not big enough to outperform recognition rates obtained with whole ear. 

Interestingly, BSIF is the only feature extractor that achieves a global improvement.  

Same distance fusion approach has been applied to internal-external ear parts with similar 

results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3: CMC curves for Up-Down distance combining 

4. DISCUSSION AND FUTURE WORK 

Results show that, according to Rank-1, there is a performance gap of up to +7 between 

upper and down parts of the ear. At the same time, the gap between internal and external 

parts is up to +18.3. However, these differences are variable between different feature 



extractors. The different nature of each extractor could be an explanation for these 

differences.  

Although simulated weighted averaging distance fusion method showed small 

improvements, the existence of a performance gap suggests that it could be possible to 

exploit it to improve the overall performance. In this sense, some future research steps can 

be identified. First, smaller and more complex ear parts could be tested.  Secondly, new 

fusion and feature extractor methods could be developed to exploit 

performance asymmetry between ear parts. Finally, feature extractors that have shown 

smaller degradation should be strongly considered in future occluded ear recognition 

systems. 

 

5. CONCLUSIONS 

Throughout this paper, the influence of different ear parts over several feature extractor 

algorithms has been addressed. Based on AWE toolbox and dataset, simulations have been 

carried out with images of only one part of the ear (up, down, external or internal). 

According to obtained results, we can conclude that, for most of the feature extractors, 

upper and internal parts have stronger influence than down and external parts. This 

performance gap between internal-external parts is bigger than the one for up-down parts. 

Both performance gap and degradation differ significantly depending on used feature 

extractor. We propose to use here presented degradation values as a metric of the 

sensitivity to occlusion of a feature extractor. 

At the same time, separately calculated distances have been combined based on a basic 

weighted averaging. A small improvement has been achieved mostly for BSIF extractor 

but results show that, for most of the cases there is no significant improvement. However, 

this should be considered as a first step to exploit existing performance gap since a lot of 

research work remains to be done: different subdivision strategies or development of new 

feature extractors or fusion models based on obtained results. 
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