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Abstract—Automatic ear recognition is gaining popularity
within the research community due to numerous desirable
properties, such as high recognition performance, the possibility
of capturing ear images at a distance and in a covert manner,
etc. Despite this popularity and the corresponding research
effort that is being directed towards ear recognition technology,
open problems still remain. One of the most important issues
stopping ear recognition systems from being widely available are
ear occlusions and accessories. Ear accessories not only mask
biometric features and by this reduce the overall recognition
performance, but also introduce new non-biometric features that
can be exploited for spoofing purposes. Ignoring ear accessories
during recognition can, therefore, present a security threat to
ear recognition and also adversely affect performance. Despite
the importance of this topic there has been, to the best of our
knowledge, no ear recognition studies that would address these
problems. In this work we try to close this gap and study the
impact of ear accessories on the recognition performance of
several state-of-the-art ear recognition techniques. We consider
ear accessories as a tool for spoofing attacks and show that
CNN-based recognition approaches are more susceptible to
spoofing attacks than traditional descriptor-based approaches.
Furthermore, we demonstrate that using inpainting techniques
or average coloring can mitigate the problems caused by ear
accessories and slightly outperforms (standard) black color to
mask ear accessories.

Index Terms—ear accessories, accessories removal, ear recog-
nition, ear biometrics, biometrics

I. INTRODUCTION

Ear recognition techniques have several advantages over

recognition approaches using competing biometric modalities

as emphasized in a recent survey [1]. However, some recent

studies, such as [2], suggest that partial occlusions of the ear

region, the presence of ear accessories and variable facial

poses under which the images are captured are three of the

main factors adversely affecting ear recognition performance.

The absence of dedicated mechanisms for accounting for the

presence of ear accessories in particular is one of the leading

shortcomings of existing ear recognition techniques.

Ear accessories contain their own identifiable characteris-

tics. This means that they not only occlude usable information,

i.e. biometric ear traits, but also present a feature-rich source

of non-identity related data. To make matters worse, such

accessories can easily be replicated and used in so-called

presentation attacks where the goal is to spoof ear recognition

systems. Consequently, the common use of ear accessories

poses one of the most problematic aspects of ear recognition.

Due to the fact that ear accessories themselves contain

certain features that can be used to identify a subject (e.g., a

person carries the same earrings in all enrollment images), an

classification model can implicitly learn to use the information

from the accessories to distinguish between subjects. This can

lead to two types of problems, P1 and P2:

• P1: A person does not wear the correct (or any) type of

ear accessories in the probe image and the classification

model fails to recognize the person. This problem affect

the overall recognition performance of the classification

model and limits in usability.

• P2: A person wears the same type of ear accessories as

used by some other person during the enrollment stage

and gets recognized as the person originally wearing the

ear accessory. This characteristic (P2) can be exploited

within a presentation-type of attack [3] on the classifi-

cation model, where an attacker tries to impersonate a

target identity and, consequently, affects the security of

an ear recognition system.

To alleviate the outlined issues, ear recognition systems

need to be aware of the presence of ear accessories and

incorporate mechanisms to ignore them when performing

recognition. In related fields, such as face recognition, such

mechanisms, e.g., [4]–[6], typically first detect the occluded

areas and then either remove them from the image or replace

them with suitable surrogates. Such an approach is expected

to circumvent problem (P2), because features related to ear

accessories are removed and the basis for presentation attacks

is eliminated from the image. However, the first problem

(P1) still persists and measures need to be taken to ensure

that ear accessories are not taken into account when learning

recognition models, so accessories need to be removed from

the training (and enrollment) images as well.

In general, there are multiple options for ear accessories re-

moval. A straight forward approach is to replace image regions

corresponding to ear accessories with a uniformly colored

patches (e.g., black or white patches). Another possibility is

trying to incorporate information from the area surrounding

the ear accessories into the surrogate region using inpainintg

techniques. Both of these approaches have certain advantages

Authorized licensed use limited to: UNIVERSITY OF LJUBLJANA. Downloaded on November 24,2020 at 21:19:33 UTC from IEEE Xplore.  Restrictions apply. 



Training input
example

Inpainting
input

Inpainting
output 

Final
outputEncoder-Decoder

E
nc

od
er

 F
ea

tu
re

s

D
ec

od
er

 F
ea

tu
re

s

Fig. 1: Illustration of the inpainting process used in this work. We assume that the location and shape of the ear accessories

is known and try to replace the ear accessory in the input image with a surrogate region produced by a context encoder. The

result (on the out most right) is an inpainted images where the ear accessory has been removed.

and disadvantages
Using uniformly colored regions, for example, can in-

troduce new edges and shapes that the recognition system

can erroneously use to distinguish and classify samples.

However, this can also happen when replacing accessories

with realistically-looking textures. Such textures can introduce

new, non-biometric features that the classification system can

wrongfully assume to be important. The resulting images may

look better to the human observer compared to images masked

with uniformly colored areas, but can again adversely affect

the recognition process. Due to this issues we evaluate both

approaches in this work (i.e., inpainting and masking).
Generally speaking, there are two goals when performing

ear accessories removal:

• Noise removal: The first goal is to remove all non-

biometric features, while not introducing new class-

biased information. This can be evaluated by observing

the recognition performance which should not change

significantly compared to images without ear accessories.

• Realistic appearance: In some domains, keeping realisti-

cally looking images of ears is preferable to introducing

artificial blobs and other non-naturally looking areas –

this is important if we plan to use the processed images

with removed earrings in some other, already developed

systems, e.g. we wish to perform accessories removal

before inputting the image into an ear segmentation

system, or would like to use it in conjuncture with a

face detector. In cases like this it is key that the replaced

areas appear natural and do not stand out.

Our goal in this work is to answer two basic research

questions related to ear accessories removal, which, to the best

of our knowledge, have not been addressed in the literature

before: 1) Do accessories removal techniques help recognition

performance? and 2) Which methods of ear accessories re-

moval work best? When trying to remove accessories from ear

images, the first step is typically to detect whether ear acces-

sories are present in the input image in the first place and to lo-

calize the accessory region using segmentation techniques [7],

[8]. However, evaluating the potential of accessories removal

techniques in conjunction with detection and segmentation

may lead to biased results, as the detection/segmentation

performance also affects accessories removal. We, therefore,

limit ourselves to oracle-type of experiments in this work

and assume that the location and shape of the accessories is

already known and binary masks exist that can be used to

conceal the ear accessories. In practice, different detection and

segmentation approaches can be used in the final recognition

pipeline to generate the actual masks - see, e.g., [7]–[9].

The main contributions we make in this work are:

• We conduct (for the first time) and empirical investigation

into the effects of ear accessories on the performance

of ear recognition techniques and study the possibility

of using accessories for presentation attacks. We use

recent convolutional-neural-network-based (CNN-based)

approaches as well as traditional ear recognition ap-

proaches for our experiments.

• We present a novel approach to ear accessories removal

using CNN-based inpainting [10] of textures that yields

realistically looking images. A diagram of the process is

illustrated in Fig. 1.

• We introduce a novel dataset of ear images with anno-

tated ear accessories containing artificially generated and

superimposed earrings that is made freely available to the

research community from http://ears.fri.uni-lj.si.

II. RELATED WORK

Although ear recognition has gained on popularity in recent

years [11]–[15], ear accessories and their effects on recogni-

tion has, to the best of our knowledge, not yet been studied

comprehensively in the literature. This is in stark contrast to

other biometric problems, where studies regarding occlusions

and accessories are common and have contributed significantly

to the performance and most of all robustness of biometric sys-

tems [4], [5], [16]–[19]. In [20], [21], for example, the authors

studied the effect of the presence of face accessories, such as

eyeglasses, scarfs and hats, on face recognition performance

using Local Binary Patterns (LBPs). These works are related

to ours in the sense that the authors address a conceptually

similar problem with similar characteristics.
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Many solutions to the problem of texture replacement

(also tailored specifically toward accessories removal) have

been proposed in the literature. In the context of biometric

recognition, these have most commonly been applied for

face recognition. Early approaches were based on a statistical

analysis of the textures surrounding the accessories areas [22],

[23], whereas more recent inpainting methods are mostly based

on CNNs [5], [10], [16], more traditional approaches [4] or a

combination ob both, such as [24].

However, the goal of ear accessories removal is in essence to

remove discriminative features from accessories and replacing

them with artificially generated surrogates [25], produced

for example by generative neural networks (GNNs). Along

these lines, the authors of [5], [16] use generative adversarial

networks (GAN) for image inpainting. GANs, however, tend to

produce unrelated data with high probability, if not constantly

constrained by the unwanted image [16]. Auto-encoders, on

the other hand, tend to generate overly smoothed images [16].

One of the possible solutions to this problem is to condition

the auto-encoder on the corrupted images and using a so-

called context encoder. In [10], the authors use such an

context encoder to predict missing data and generate sharp and

realistically looking surrogate images. We use a similar idea

and also build our inpainting process around context encoders.

III. METHODOLOGY

The key questions regarding ear-accessories-aware recog-

nition are i) which accessories removal techniques are most

suitable, ii) to what extent do removal techniques help, and

iii) are accessories in ears images as problematic as they have

been proven to be in other areas of biometrics? To answer

these questions we conduct a number of experiments using

the methodology presented in the remainder of this section.

A. Dataset Preparation

We first built a suitable dataset for our experiments using

a subset of images from the Unconstrained Ear Recognition

Challenge (UERC) test dataset [7]. The UERC dataset was first

presented as a test dataset for the Unconstrained Ear Recogni-

tion Challenge held in conjunction with the International Joint

Conference on Biometrics (IJCB) 2017. It contains images

acquired from the Internet, which exhibit variability in terms

of illumination conditions, different pose angles, occlusions,

and most importantly accessories. However, because the subset

of images that contain accessories is small (i.e. 189 images)

we generate an artificially augmented dataset where a set of

different earrings is superimposed over the existing ear images.

There are nine source images of earrings, but are always

resized and changed in color, resulting in many different

variations. A few examples of the resulting images are shown

in Fig. 2.

In order to follow realistic earrings positions, the earrings

are generated in locations using the following rules:

• the vertical position of the earring is selected randomly

in the lower half of the image,

Fig. 2: Sample images from the generated dataset. The top

rows shows original images from the UERC dataset and

the lower row shows images with artificially superimposed

earrings.

• the horizontal position is set randomly, so that the ear-

rings are at least 20% of the image width away from the

left and right image border,

• the earring size is set randomly for the height and width

with ratios ranging from 0.8 to 1.5 of the original earring

dimensions.

With the outlined procedure we can generate a practically

infinite amount of ear images, however, for our experimental

dataset we limited to the original size of 4,104 ear images.

Since the images are artificially generated, a binary mask

indicating the location and shape of the ear accessories is also

included in the dataset for each image. The dataset is publicly

available from: http://ears.fri.uni-lj.si.

B. Removal of Ear Accessories

We remove ear accessories by replacing the unwanted

image pixels corresponding to earrings with three different

approaches:

• Inpainting: replacement of the ear accessories with nat-

urally looking surrogate regions,

• Fixed-color: replacement of the ear accessories with

black overlay color - this is the most straight-forward

approach, and

• Adaptive-color: replacement of the ear accessories with

the average color of the image – to avoid too sharp edges

at the borders of the new area while still ensuring the

absence of unwanted accessory features.

We describe all three approaches in detail in the remainder

of this section.

Replacing accessories with CNN-based inpainting: For

the accessories removal we use Context Encoders initially

proposed in [10]. The reason we rely on context encoders is

that they ensure realistic surrogate regions for the inpainting

process and that an open source implementation is readily

available from https://github.com/jazzsaxmafia/Inpainting.

Context encoders represent CNN-based auto-encoders that

are conditioned on the input image. They can easily be trained

to generate the missing contents of an arbitrary input image,
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including ear images. The architecture consists of encoder-

decoder pipeline, where the encoder uses an input image with

missing areas and extracts features. The features are then

fed to the decoder through the fully-connected layer which

generates a complete image, consequently filling in the missing

areas [10]. The three main parts of a context encoder are as

shown in Fig. 1 and are the following:

• The encoder: derived from the first five layers of

AlexNet [10], [26] that accepts 227× 227 RGB inputs.

• The fully connected intermediate layer: a simplified fully-

connected layer, where some part are not really fully

connected for performance reasons.

• The decoder: uses the feature representations from the

fully connected layer in five upsampling and convolu-

tional layers to generate the final inpainting output [27].

For the loss function we use an adversarial loss within

a GAN framework. This means the context encoder is con-

secutively learning an adversarial discriminative model D to

provide loss gradients to the generative model. The learning

procedure is a process where the adversarial discriminator D
takes in the prediction of the generator G and the ground truth,

and then tries to distinguish between them. At the same time

G tries to confuse D by producing samples that appear more

an more realistic (i.e., similar to the actual ground truth) as

the training procedure progresses [10].

The pipeline for the inpainting method is shown in Fig. 1

and is the following:

1) In the first step, the mask of the ear accessory is defined -

here we assume this is known, but in practice the mask

can be generated automatically using techniques, such

as [8], [9].

2) Next, the bounding box for the ear accessory is defined.

The area of this bounding box is stored as a new image

and used with the CNN inpainting model. During train-

ing, these cropped areas (without the ear accessories)

are used to train the model – both the original cropped

area and the area with the overlaid mask are needed by

the training procedure. At test-time the rectangular area

with the masked-out ear accessory serves as an input for

the inpainting model.

3) Once the masked and cropped region is processed by the

inpainting model, the resulting inpainted image reinsert

into the original image.

4) In the last step, the prediction is merged with the ear-

accessory mask to produce smoother baounderies in the

final inpainted ear image.

Our inpainting pipeline can be seen to be related to [28],

where the authors used GNNs for face deidentification. In

their pipeline they swap originals with generated faces. This

is analogue to our pipeline, however instead of faces we are

“deidentify” accessories and instead of GNNs we use context

encoders.

Replacing accessories with uniformly colored areas:
Because inpainting produces realistically looking areas it also

means that potentially unwanted features are created. The
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Fig. 3: Illustration of the experimental setup for the spoofing-

attack experiments. For each identification attempt the earring

of the probe image is copied over to the images all other

gallery identities, whereas the gallery images of the same

subject get a different earring. The dotted line indicates the

probe image in the current identification attempt. Subjects

are color coded and accessories are marked with letters (best

viewed in color).

premise for using uniformly-colored patches (or masks) is that

no new features are introduced. Using areas like these, the

classification system has no non-biometric information to rely

on, that would adversely impact the recognition performance.

This is the reason that we include these options in our tests.

However, although these areas contain no textures, they still

have certain shapes and edges. Due to this reason we consider

two options:

• The whole masked region is set to 0, resulting in black

color everywhere where ear accessories used to be (i.e.,

fixed-color replacement),

• The whole masked region is colored uniformly with

the average pixel value of the whole image. The area

corresponding to the ear accessory is omitted from the

average color information and each color channel average

is calculated separately (i.e., adaptive-color replacement).

C. Recognition

We use two feature representations for our recognition

experiments. The first is based on a CNN-based recognition

model exploiting a VGG model architecture that was already

used as a baseline for UERC [7]. The second representation

relies on Local Binary Patterns (LBP) and is again taken from

the UERC toolkit. The parameters of both feature extractors

were left to the default values (as shipped with the UERC

toolkit) and were not altered for the experiments, as our

goal was not to optimize recognition performance itself, but

to study the effect of ear accessories and different replace-

ment/removal techniques on two representative ear-recognition

techniques.

CNN-based recognition with VGG-16: The VGG network

(or model) [29] is an example of so-called very deep CNN

models and in the most common configuration consists of a

total of 16 network layers (VGG-16). The VGG model has
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been successfully applied to numerous recognition problems,

including ear recognition (see e.g., [7], [11], [30], [31]) and has

been shown to ensure competitive performance on challenging

ear datasets. Although newer architectures were shown to

outperform the model for certain recognition tasks [32], we

select VGG-16 for our tests to show how one the most widely

used CNN architectures performs with accessories removal

techniques and how susceptible it is to presentation attacks

based or ear accessories.

In our experiments we use the output of the second fully

connected layer (referred to as FC6) of the VGG-16 model

as our image representation, instead of feeding the features

forward to the next fully connected layer (textitFC7) and the

final softmax layer at the end. This enables us to use VGG-

16 open-set recognition problems, where identities in the test

set are different from the identities used to train the model.

To measure similarities we use the cosine distance in the

experiments.

LBP-based recognition: Local Binary Patterns (LBP) [33]

represent one of the most popular (hand-crafted) feature-

extraction methods used for recognition purposes [1], [34]–

[36]. We used the implementation available as a part of the

AWE [1] and UERC [7] toolkits. The use of the LBP descriptor

for ear recognition is mainly motivated by its computational

simplicity and the fact that the texture of the ear is highly

discriminative. Many successful ear recognition techniques

have been presented in the literature exploiting LBPs either

as stand-alone texture representations or in combination with

other techniques, e.g., [37]–[39]. The technique used in this

work uses uniform LBPs (with a radius of 1 and 8 neighbors)

extracted from partially overlapping image blocks as an image

representation and again the cosine distance for similarity

measurements. A more detailed description of the approach

is available from [7].

IV. EXPERIMENTS & RESULTS

In this section we describe the experiments used to evaluate

the impact of ear accessories on ear recognition techniques

and assess the usefulness of different accessories-removal

techniques.

Experimental setup. We perform two types of experiments:

• Standard identification experiments (1:N matching,

where N denotes the number of identities), where ei-

ther the original UERC ear images (without artificial

accessories) or images with superimposed ear accessories

are used. The goal of these experiments is to establish

the baseline performance for the tested recognition tech-

niques and evaluate the impact of the presence of ear

accessories on the recognition performance.

• Spoofing attempt experiments in an identification sce-

nario, where ear accessories, or more precisely earrings,

are copied from the probe to the gallery images to

artificially increase the similarity of the images between

subjects. Specifically, for each identification test the ear-

ring of the given probe image is superimposed onto the

gallery images of all target subjects. To make the problem

Fig. 4: Sample inpainting results. For easier comparison,

inpainting in these examples was done on the same region

each time. The first column contains the original images, the

second column are the input images, the third are the outputs

of the inpainting model, and the last column shows the outputs

of the pipeline after masking.

Authorized licensed use limited to: UNIVERSITY OF LJUBLJANA. Downloaded on November 24,2020 at 21:19:33 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I: Comparison of the Rank-1, Rank-5 and AUCMC

score generated during the experiments. The approach most

affected by presentation attacks is highlighted in gray and the

best performing accessories removal approach for each method

(VGG-16 vs. LBP) and performance metric (Rank-1 vs. Rank-

5 vs. AUCMC) is shown in bold.

Exp. type Data Method Rank-1 Rank-5 AUCMC

Standard
Original

VGG-16 12.06 28.85 82.66

LBP 14.90 29.91 77.28

Accessories
VGG-16 4.89 15.06 71.08

LBP 12.84 27.29 75.90

Spoofing

Attack
VGG-16 0.00 0.00 1.05

LBP 3.84 9.06 55.98

Inpainting
VGG-16 10.45 25.85 81.50

LBP 14.29 27.96 76.57

Fixed color
VGG-16 9.01 22.79 78.69

LBP 13.62 28.02 75.78

Adapt. color
VGG-16 11.01 24.68 80.47

LBP 14.01 28.46 76.13

harder and capitalize on the role of ear accessories, a

different earring is placed over the gallery images of

the true identity (i.e., the gallery images corresponding

to the identity of the probe image). The overall idea

of this experiment is illustrated in Fig. 3. The goal of

this series of experiments is to test how susceptible the

two feature extraction approaches are to accessory-based

presentation attacks and evaluate how useful accessory

removal techniques are as spoofing counter measures.

We adopt a similar all-vs-all protocol as for UERC, where

a total of 1800 images belonging to 180 subjects is used for

the experiments. Each of the 1800 images is used once as the

probe and is matched against all remaining 1799 images for

each identification attempt. The dataset contains an additional

(subject disjoint) training set of 2, 304 images that are used to

train the inpainting network. This training set is further divided

into train and validation set for the learning procedure with the

ratio of 7 : 3 – 1, 728 images in the training and 576 images

in the validation set. The inpainting model is trained from

scratch on a desktop PC with a Titan Xp GPU using stohastic

gradient descend (SGD) with a learning rate of 0.002, weight

decay rate of 10−5, and a momentum 0.9.

Qualitative evaluation of the inpainting model. Some

sample outputs of the inpainting model are shown in Fig. 4.

Note that the output in the last column look reasonably

realistic, a closer look, however, reveals some features that

are different from the ground truth on the far left. This

means that the inpainting produces results in images that look

realistic to a human observer, but are not necessary more

useful for recognition purposes than the more simple maksing

techniques (using either fixed or adaptive color masking).

This observation is also validated by the experimental results

presented in the next section.

Recognition experiments. For the recognition (identifi-

cation) experiments, we use all three accessories removal

strategy introduced in Section III-B. We report the results in

terms of the rank-1 and rank-5 recognition rates as well as

the normalized area under the Cumulative Match Score Curve

(AUCMC) similarly to [7]. We also provide CMC curves of

the experiments for a more detailed picture of the performance.

From the results in Table I and Fig. 5 we see that the LBP-

based technique performs slightly better than the VGG model

on the original UERC images without any ear accessories

(see row of Table I labeled Original). Once accessories are

randomly added (row of Table I labeled Accessories) to the

images, the recognition performance drops for both techniques

suggesting that accessories have in general an adverse effect

on the recognition performance. The observed performance

drop is significantly larger for the VGG model than for the

LBP-based technique, which shows that accessories affect

the learned features to a larger extent than the hand-crafted

features.

The impact of the ear accessories becomes even more

extreme in the case of presentation attacks, where the earrings

in the gallery were intentionally copied over from the probe

images to simulate spoofing attempts. In this case (see Table I

row labeled as Attack), the features generated by the VGG-16
network are rendered virtually useless, as the rank-1 as well

as the rank-5 recognition rate both drop to 0. For the LBP-

based approach, the drop in performance is still in the range

of 75%, but, nevertheless, not as extreme as with the CNN-

based features. This is an important finding, as it shows that

using traditional approaches based on hand-crafted features in

real life deployment might still be viable, despite the recent

advancements in deep learning. The results suggest that simply

by matching ear accessories (which often cover a large are of

the ear images) between probe and gallery images it is possible

to spoof existing ear recognition systems.

We observe that accessories removal techniques can largely

mitigate the impact of accessories on the recognition perfor-

mance even within the more challenging spoofing scenario.

There still exists a performance gap between the original

images and the processed images with masked or inpainted

accessories, which is slightly larger for the CNN-based fea-

tures than for the hand-crafted ones, but overall all assessed

accessories removal techniques help with the recognition per-

formance significantly. It is interesting to observe that the

inpainting technique, despite being computationally the most

demanding and producing the best visual results, has only a

slight advantage over the much simpler masking techniques.

As we can see from the lower part of Table I and the CMC

plots in Fig. 5, the difference in the recognition performance

ensured by the three tested accessories removal techniques is

minimal.

CONCLUSION

In this work, we showed for the first time that ear acces-

sories present a real problem for ear recognition techniques

that not only significantly affects performance, but can also be

exploited as the basis for presentation attacks. We also showed
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Fig. 5: Cumulative match score curves (CMC) generated during the spoofing experiments without any counter measures (denoted

as Attacks) and with the three ear accessories removal techniques (denoted as Inpainting, Fixed-color, and Adaptive-color - see

Section III-B for details) using: LBP features (left), and VGG-16 features (right). The plots show that the learned CNN-based

features are much more susceptible to presentation attacks than the hand-crafted LBP features and that all three accessories

removal technique represent effective counter measures, which ensure similar recognition performance.

that especially CNN-based approaches are highly suscepti-

ble to these kinds of attacks. Furthermore, our experiments

suggested that accessories removal techniques can be used to

efficiently mitigate the impact of accessories on ear recognition

systems.
As part of our future work we plan to incorporate the best

performing ear accessories removal technique into a complete

ear recognition pipeline with together with an CNN-based ear

accessories segmentation model that we are currently working

on and that will automate all steps of the inpainting procedure.
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GOSTOP. The Titan Xp GPU used for this research was

donated by the NVIDIA Corporation.

REFERENCES
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