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Abstract—Ear detection is an important step in
ear recognition pipeline as it makes or breaks the
system. However, in the literature there is arguably
the lack of ear detection approaches available. This
poses a problem for opening ear recognition sys-
tem to wider use and applications in commercial
systems. To tackle this problem we present the
use of Mask R-CNN for pixel-wise ear detection.
Furthermore, we directly compare our approach
to one of the previous best performing pixel-wise
ear detection approach by using the same dataset
and protocol. Our results with intersection over
union score of 79.24% on AWE dataset show the
superiority of our approach and present a viable
approach for future use in ear recognition pipelines.
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I. Introduction
Pipeline of a typical biometric system consists of

raw data acquisition, detection, feature extraction,
classification and system evaluation. Performance of
each step can greatly influence the performance of
the whole system. In this work, we focus on pixel-
wise ear detection and evaluate the performance of
a convolutional neural network (CNN) architecture,
Mask R-CNN [1]. We use 2D images captured under
uncontrolled conditions, proving the feasibility of this
approach.

The rest of this paper is structured as follows: a
review of related work is given in Section 2, and Section
3 describes the Mask R-CNN approach. Mask R-CNN
is described as a combination of five parts. In Section
4, training dataset and performance metrics are de-
scribed and a comparison with PED-CED approach
is given to evaluate the performance of our approach.
Finally, Section 5 provides the conclusions.

II. Related work
Automatic ear detection approaches date all the way

back to 2007, with the use of Hough Transform [2].
However, in this paper we overview only some of
the more recent works. To get a more comprehen-
sive overview of the field, the reader is referred to
some of the ear detection surveys [3], [4]. In 2015
the authors of [5] presented an entropy-cum-Hough-
transform-based ear detection approach. They used a
combination of hybrid ear localizer and an ellipsoid ear
classifier to enhance ear location predictions. Detection
rate is defined as a ratio between number of successful

ear localizations and number of all annotated ears. Ear
localization is considered successful if detected area
covers the entire ear and if the distance between center
of the detected region and annotated ground truth
is close enough. Authors achieved detection rate of
100.0%, 100.0% and 73.95% on UMIST [6], FEI [7]
and FERET [8] datasets, respectively.

In 2016 authors of [9] proposed modified Hausdorff
distance for automatic ear localization. This distance
uses skin regions of side face image and ear template
to locate the ear. Ear template was created by con-
sidering different structure of ears to detect ears of
different shapes. To find the exact ear location authors
automatically resized the ear template. Experimental
results shows that the proposed approach is invariant
to shape, pose, illumination and occlusion of ear im-
ages. Detection rate is again defined as ration between
number of successful ear localizations and number of
all annotated ears. Authors tested their approach on
the CVL face database [10] and the ND-Collection E
database [11] and obtained detection rates of 91.0%
and 94.5%, respectively.

In 2017 authors of [12] improved traditional Faster
Region-based Convolutional Neural Networks algo-
rithm with Multiple Scale Faster R-CNN framework
in terms of ear detection step. They evaluated their
approach on three different databases, UBEAR [13],
WebEar [12] and UND-J2 [14]. They achieved 100% ac-
curacy on 1800 images from UND-J2 database, which
includes ear images in controlled environment. On 200
ear images from WebEar database, which includes ear
images from the web (uncontrolled environment), the
approach achieved accuracy of 98%. Similar accuracy
of 98.66% was achieved on 9121 ear images from
UBEAR database. It must be noted that this approach
uses bounding box detections.

In 2018 deep learning approaches for ear detection
started to appear. The authors of [15] presented a
novel ear detection technique based on convolutional
encoder-decoder networks to address occlusions, ear
accessories and variable illumination on images cap-
tured in unconstrained settings. Evaluation of this
approach was tested on 250 ear images from AWE
dataset [16], which consists of images gathered from
the web (uncontrolled environment). The authors
achieved accuracy of 99.4% and intersection over union
score of 55.7%. As opposed to [12], this approach uses
pixel-wise detections.
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However, there are no standard benchmarks and
evaluation methodology for ear detection. Existing
approaches are evaluated on different performance
metrics and also different databases which makes it
harder to compare it among themselves. For example
both [12] and [15] report evaluation on same perfor-
mance metrics (accuracy, precision and recall). But
authors in [12] use correct detections (true positives)
on image level (number of correctly located ears) while
authors in [15] use correct detections on pixel level
(number of correctly classified pixels).

III. Methodology
Mask R-CNN [1] extends Faster R-CNN [12], which

uses bounding box detection. Authors of Mask R-
CNN method added a branch for predicting an object
mask along with the existing branch for bounding box
detection in Faster R-CNN. This branch is a fully
connected convolutional network, which is applied to
each region of interest (RoI) and predicts a pixel to
pixel segmentation mask. The main advantage of Mask
R-CNN is locating exact pixels of each object instead
of just bounding boxes. We begin with a quick overview
of Mask RCNN’s predecessor.

A. Faster R-CNN
Faster R-CNN consists of two stages, one being Fast

R-CNN [17] and the other being the region proposal
network [12]. Fast R-CNN includes a feature extrac-
tor, classifier and bounding box regressor in a single
convolutional neural network. Along with image, Fast
R-CNN requires region proposals as an input. Authors
of Faster R-CNN observed that convolutional feature
maps calculated with Fast R-CNN could be used for
generating region proposals. They managed to reuse
results from Fast R-CNN and get the region proposals,
which are candidates for object bounding boxes.

B. Mask R-CNN
Mask R-CNN has similar stages as Faster R-CNN

with added pixel-wise prediction branch. We can break
down this method to five parts:

1) convolutional backbone architecture,
2) region proposal network,
3) region of interest (RoI) classifier,
4) bounding box regressor,
5) Detection pixel-wise masks.
The authors instantiated Mask R-CNN with mul-

tiple backbone architectures. They evaluated
ResNet [18] and ResNeXt [19] networks of depth 50 or
101 layers and also explored Feature Pyramid Network
(FPN), proposed in [20].

Region proposal network scans the image with
sliding window over anchors (red squares on Fig. 1)
with different size and aspect ratios [21].

As mentioned region proposal network does not scan
over the image but uses one of the feature maps
generated by convolutional neural network. For each
anchor the region proposal network outputs foreground

Fig. 1. Red squares represent anchors, which are scanned by
region proposal network. These squares are drawn on the original
image for illustration. RPN actually scans over the feature maps
but areas on the feature maps correspond to areas on original
image. These anchors are of different sizes and usually they
overlap to cover as much space as possible.

Fig. 2. Original image of size 128×128 pixels and corresponding
feature map of size 28 × 28 pixels.

(object) or background class. Anchors that are most
likely to contain objects are called regions of interest
and are passed to RoI classifier [21].

The authors proposed RoI classifier called
RoIAlign, which improves RoIPool [17] from Faster R-
CNN. RoIPool is used for bounding box detections.
Authors of Mask R-CNN realized that feature map
calculated by RoIPool did not align with regions of
the original image [22]. This is due to the fact that
pixel-wise masks must be more precise that bounding
box masks. RoIPool rounds RoI boundaries which
leads to misalignment. If we take a look at Fig. 2, in
RoIPool that would correspond to rounding region in
the feature map from 3.5 × 3.5 pixel region to 3 × 3
pixel region. Contrary to RoIPool, in RoIAlign there is
no rounding of RoI boundaries. However, in RoIAlign
we use bilinear interpolation to get exact idea of what
would be at pixel 3.5.

This classifier returns the class of the object in
the region of interest. Unlike region proposal network,
which has two classes, this stage is capable of classify-
ing region of interest to more classes, such as person,
car, airplane, etc.

The main purpose of bounding box regressor is
to further refine the coordinates for the bounding box
once the object has been classified.

Detection pixel-wise masks are the main ad-
vantage that extends Faster R-CNN. Mask branch is
convolutional network which takes regions selected by
ROI classifier and generates low resolution 28x28 pixels
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masks for these regions [21].

C. Implementation

To perform ear detection on ear images we use Mask
R-CNN implementation available online [23]. The im-
plementation used, however, has some differences from
the paper.

Mask R-CNN implementation uses standard convo-
lutional neural network ResNet101 proposed in [18]. In
addition to ResNet101 authors of [23] included feature
pyramid network from [20], which uses connections
to build in-network feature pyramid [1]. As already
explored in [1], excellent gains in accuracy and speed
are achieved using a ResNet-FPN backbone for fea-
ture extraction with Mask R-CNN. Feature pyramid
network enables better representation of objects at
different scales.

All images are resized to 1024 × 1024 pixels to
support training multiple images per batch. If image
is not square it is padded with zeros, to preserve the
aspect ratio [23]. Image is then converted to a feature
map of shape 32×32×2048 while passing through the
ResNet backbone.

Instead of RoIAlign authors of implementation use
TensorFlow’s crop_and_resize function for simplicity.

IV. Experimental results

In this section we describe images used for train-
ing, training protocol and performance metrics used
to evaluate and compare Mask R-CNN ear detection
approach with PED-CED approach.

A. Training dataset

For the purpose of training Mask R-CNN for ear
detection, ear images were collected from the web. In
that way the images were gathered in unconstrained
environment and of different resolutions. RefineNet-
based [24] detector was used to detect ears on all
images. We examined results and annotated which ears
were correctly detected. Next step was to remove failed
detections after which we ended up with 12,500 ear
images with their pixel-wise detection masks which
were used as our ground truth. Images were split into
train and validation set of 9,500 and 3,000 images,
respectively.

B. Training

We train our model on Nvidia GeForce GTX
1070 graphics card with 8GB of memory. One
image per GPU is used and we set number of
epochs to 200 and number of steps per epoch
to 30. For training starting point we use weights
from https://github.com/matterport/Mask_RCNN/
releases/download/v2.1/mask_rcnn_balloon.h5.

C. Performance metrics
We used the same performance metrics as in [15].

We have only two classes, ear and non-ear. We define:
• TP (true positives): number of pixels that are

correctly classified as a part of an ear,
• TN (true negatives): number of pixels that are

correctly classified as non-ear pixels,
• FP (false positives): number of non-ear pixels that

are classified as a part of an ear,
• FN (false negatives): number of ear pixels that are

classified as non-ear pixels.
First we define detection accuracy as

Accuracy =
TP + TN

TP + TN + FP + FN
. (1)

This accuracy has large TN value, since the majority
class is non-ear. Hence we expect this measure to have
value close to 1. Second metric is intersection over
union (IoU), which is defined as

IoU =
TP

TP + FP + FN
. (2)

IoU represents a ratio between pixels that are in
annotated and detected ear regions (intersection) and
pixels that are in union of annotated and detected
ear regions. Perfect overlap gives us score of 1 while
completely failed detection gives us score of 0. Third
metric is recall, defined as

Recall =
TP

TP + FN
, (3)

which tells us how many of ear pixels were actually
detected. On the other hand we define precision as

Precision =
TP

TP + FP
, (4)

which tells us how many of the detected ear pixels were
indeed ear pixels.

D. Detection evaluation
We evaluate our approach on 250 test images of

AWE dataset [16] and compare it to [15]. We achieve
similar detection accuracy of 99.7%, which is partly the
consequence of background (non-object) being the ma-
jority class. Performance comparison on AWE dataset
is shown in Table I.

TABLE I
Performance comparison of Mask R-CNN and PED-CED

on AWE dataset.

Approach IoU [%] Precision [%] Recall [%]
PED-CED 55.7±25.0 67.7±25.7 77.7±32.8

Mask R-CNN 79.24±0.19 92.04±0.16 84.14±0.20

In addition we evaluate our approach in terms of
correctly detected ears. Ears on image are correctly
detected if intersection over union is above 0.5. Our
approach correctly detects ears on 232 images (out
of 250 test images of AWE dataset) thus achieving
detection accuracy of 92.8%.
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(a) 0% (b) 0% (c) 14.97% (d) 18.92% (e) 27.37%

(f) 40.12% (g) 51.27% (h) 54.82% (i) 58.18% (j) 63.16%

(k) 90.81% (l) 92.36% (m) 93.63% (n) 95.03% (o) 96.13%

Fig. 3. Detection results ordered in terms of their increasing values of intersection over union score. Colored regions are classified
as ears. In the top row there are some of the worst detections, the middle row shows average detection and the last row shows some
of the best detections made by Mask R-CNN model.

The best ear detection on AWE dataset has IoU
score of 96.13%. Fig. 3 summarizes some of the best
ear detections, some average ear detections and some
of the worst ear detections. From 3a we see that occlu-
sions in form of hair covering part of the ear is, in some
cases, still a problem for our model. Mask R-CNN also
incorrectly classifies glasses and eyes as ears, which can
be seen on 3b and 3f, respectively. In addition, fingers
(3h and 3j) and hands (3c and 3d) are also classified as
ears in some cases. In these cases creases on skin might
be interpreted as pinna and therefore classified as ear.
Hand and finger regions are elongated shaped just like
ears in most of the cases. Our model learns that ears
usually appear on both sides on portrait images. We
can see from 3i that Mask R-CNN tries to find ears
on both sides of portrait image. It correctly finds left
ear but incorrectly classifies background object as right
ear due to it’s specific position on the image. From last
row we can see that our model correctly detects one
and more ears on the image with high accuracy (in
terms of IoU score).

V. Conclusion
In this paper we describe Mask R-CNN and evaluate

this approach for ear detection. We report pixel-wise
performance in terms of detection accuracy, intersec-
tion over union precision and recall. We also report
detection accuracy image-wise. We show that this
approach performs very well for ear detection step,
achieving detection accuracy of 99.7%, IoU score of
79.24%, precision of 92.04% and recall of 84.14% on

AWE dataset. IoU score, precision and recall were all
shown to be significantly higher than those achieved
by PED-CED approach, while detection accuracy stays
almost the same.
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